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1 INTRODUCTION: WHY SHORT RANGE
CORRELATIONS (SRC)?
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•Many properties of nuclei measured at low Q2 and generated by the average
and collective motions of point-like nucleons can be successfully described in
terms of the nuclear Mean Field (Shell Model).

• Nowadays it is possible to investigate nuclei at high Q2, probing distances
of the order of the nucleon radius (' 1fm), and the following longstanding
questions arise:

1. Do nucleon and meson d.o.f. play still a role at short distance, or quark and
gluon d.o.f. are the relevant ones?

2. Is the two-nucleon short-range behavior strongly affected by the surrounding
nucleons?

3. Does the short-range behavior of nuclei affect cold matter at high densities,
e.g. neutron stars?

4. Does the short-range structure of nuclei affect high energy scattering, e.g. pA
and AA?

Answering these questions implies the study of Short-Range Correlations (SRC).
To this end, one needs dedicated experiments and a well-defined theoretical
framework to interpret them.
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2 AB INITIO SOLUTIONS OF THE NUCLEAR
MANY-BODY PROBLEM AND THEORETICAL

PREDICTIONS OF SRC
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THE STANDARD MODEL OF NUCLEI

QCD =⇒ Nuclei- non perturbative regime =⇒ too difficult
Many-body systems =⇒ single out the leading effective d.o.f.
Effective d.o.f. in Nuclei=⇒ nucleons and gauge bosons.
Reduction of a field theoretical description to an instantaneous
potential description (Schroedinger equation ) =⇒ two-body, three-
body,........,A-body potentials are generated.

Primakoff,Holstein 1944

(m-body potential) '
(vN
c

)(m-2) × (two-body potential)

− h̄2

2mN

∑

i

∇̂2
i +

∑

i<j

v̂2(i, j) +
∑

i<j<k

v̂3(i, j, k)


 Ψo(1 . . . A) = EoΨ0

Ψo ≡ Ψo(1 . . . A) i ≡ xi ≡ {σi, τi, ri}
A∑

i=1

ri = 0
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Theoretical framework: Solve ab initio the standard model with
realistic interactions =⇒ compare with experimental data (energy,

form factors, transition matrix elements, etc); if agreement is
found =⇒ OK; if not =⇒ look for new d.o.f.

Modern bare two-nucleon interactions (' 2000 phase shifts)

v̂2(xi, xj) =

18∑

n=1

v(n)(rij)Ô(n)
ij rij ≡ |ri − rj|

O(1)
ij = 1, O(2)

ij = σi · σj, O(3)
ij = τi · τj

O(4)
ij = (σi · σj)(τi · τj), O(5)

ij = Ŝij, O(6)
ij = Ŝijτi · τj,

Ŝij = 3(r̂ij · σi)(r̂ij · σj)− σi · σj
• short-range repulsion (common to many systems)

• intermediate- to long-range tensor character(unique to nuclei)
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THE MEAN FIELD APPROXIMATION∑

i<j

v̂2(i, j) +
∑

i<j<k

v̂3(i, j, k) =⇒
∑

i

Vi(i).

⇓[
− h̄2

2mN

∑
i ∇̂2

i +
∑
i V (ri)

]
Φo(1, . . . , A) = εoΦo(1, . . . , A)

Mean-field (shell model) wave function

Φ0(1, 2, . . . , A) = Â
A∏

i

φαi(xi) ≡ Φ0p0h αi > αF , φαi = 0

Exact correlated wave function
Ψ0(1, 2, . . . , A) = C0p0h φ0p0h + C1p1hΦ1p1h + C2p2hΦ2p2h + . . .

SRC −→
∞∑

n=1

CnpnhΦnpnh
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VARIOUS ab initio THEORETICAL METHODS

•Direct solution for few-body systems (Faddeev, Fadeev-
Yakubowsky): Gloeckle & co.

• Expansion in complete set of basis functions: Suzuki & co.

•No Core Shell Model Vary & Co.

• Introduction of correlations into the mean field wave function by
proper correlation operators: Roth, Neff & co.

• SRG: Furnstahal, Schwenk & co,

• Correlated basis functions with Green Function Monte Carlo:
Schiavilla, Wiringa & co..

• Correlated basis functions and cluster expansion: Pisa & Perugia
Groups
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OUR APPROACH

Ψo = F̂ Φo

F̂ = Ŝ
∏

i<j

f̂ij = Ŝ
∏

i<j

[∑
n

f (n)(rij) Ô(n)
ij

]
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THE RELEVANT QUANTITY: DENSITY MATRICES

Diagonal one-body density matrix (1BDM )(matter distribution):

ρ(1)(r1) =

∫
|Ψ0(r1, r2 . . . , rA)|2

A∏

i=2

dri

Non diagonal (1BDM ) (One-body density fluctuations):

ρ(1)(r1, r
′
1) =

∫
Ψ∗0(r1, r2 . . . , rA) ri)Ψ0(r′1, r2 . . . , rA)

A∏

i=2

dri

Non diagonal 2-body density matrix (2BDM )(two body density fluc-
tuations):

ρ(2)(r1, r2; r′1, r′2) =

∫
Ψ∗0( r1, r2 . . . , rA) Ψ0( r′1, r′2 . . . , rA)

A∏

i=3

dri

Diagonal 2BDM:

ρ(2)(r1, r2) =

∫
|Ψ0( r1, r2 . . . , rA)|2

A∏

i=3

dri
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The relative (rel ) and center-of-mass (CM ) density matrices

r = r1 − r2 R = (r1 + r2)/2

ρ(2)(r,R) =

∫
|Ψ0(R +

r

2
,R− r

2
, r3 . . . , rA)|2

A∏

i=3

dri

ρCM (R) =

∫
ρ(2)(r,R)dr

ρrel(r) =

∫
ρ(2)(r,R)dR

The relative 2BDM has been calculated by different groups within
different many-body approaches and realistic bare NN interactions.
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The RELATIVE 2BDM and the CORRELATION HOLE in
FEW-NUCLEON SYSTEMS

Schiavilla et al, Nucl. Phys. A267 (1987) 267

Figure 1: The two-body relative distribution in 3He and 4He (After Ref. [?])
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The 2BDM ρ(2) in few-nucleon systems in (ST)=(10) and (01) states
Suzuki, Horiuchi, Nucl. Phys. A818, 188 (2009)

Feldmaier, Horiuchi, Neff, Suzuki, Phys. Rev. C84,054013(2011)
(10)
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At r < 1.5fm the 2BDM exhibits
A-independence

⇓
UNIVERSALITY of SRC
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The 2BDM ρ(2)(r) in COMPLEX NUCLEI
Alvioli, CdA, Morita, ArXiv: 0709:3989 (2007) Submitted
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At r < 1.5fm the 2BDM exhibits
A-independence in complex nuclei as

well

⇓
UNIVERSALITY of SRC
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The Correlated 2BDM versus the Mean-Field 2BDM
Pieper, Wiringa, Pandharipande, Phys. Rev. C46 1741 (2000)

Figure 2: The two body density distribution within realistic and mean-field approaches for 16O
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SRC IN CONFIGURATION SPACE: SUMMARY

• SRC create the correlation hole, generated by the cooperation
of the short-range repulsive interaction and the intermediate-
range tensor attraction . The basic features of the correlation
hole are independent of the mass A =⇒ universality of SRC.

• SRC modify the spin-isospin content of the wave function.

•How can we investigate the existence and the properties of the
correlation hole ? To this end we have to shift to momentum
space. What do we expect? We expect: (i) an increase of nu-
cleon high momentum components, and (ii) peculiar momentum
configurations in the nuclear wave function..
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THE NUMBER OF PAIRS IN SPIN-ISOSPIN STATES.

Pauli Principle: l+S+T-odd
Shell Model (IPM):
A ≤ 4: l− even,(10),(01)–A > 4: l− even,(10),(01); l = odd,(00),(11)
NN interaction creates states (00) and (11) also in A ≤ 4 nuclei
The pair (ST) probabilities:
p-n pair: (3/4) [(10)+(00)] + (1/4)[(01) +(11)]
p-p (n-n) pair: (01) +(11)
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The number of pairs in various (ST ) states is then given by

N
N1N2
(ST )

=

∫
dr1 dr2 ρ

N1N2
ST (r1 = r′1; r2 = r′2)
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The number of NN pairs in various spin-isospin (ST) states

(ST)
Nucleus (10) (01) (00) (11)

2H 1 - - -
3He IPM 1.50 1.50 - -

SRC (Present work) 1.488 1.360 0.013 0.139
SRC (Forest et al, 1996) 1.50 1.350 0.01 0.14

SRC (Feldmeier et al, 2011) 1.489 1.361 0.011 0.139
4He IPM 3 3 - -

SRC (Present work) 2.99 2.57 0.01 0.43
SRC (Forestet al,1996) 3.02 2.5 0.01 0.47

SRC (Feldmeier et al, 2011) 2.992 2.572 0.08 0.428
16O IPM 30 30 6 54

SRC (Present work) 29.8 27.5 6.075 56.7
SRC (Forest et al, 1996) 30.05 28.4 6.05 55.5

40Ca IPM 165 165 45 405
SRC (Present work) 165.18 159.39 45.10 410.34

• NN interaction doesn’t practically affect the state (10) but appreciably re-
duces the state (01) giving rise to a "visible" content of the (11) state; this is
due to a three-body mechanism originating from the tensor force.
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THE THREE-BODY MECHANISM
H. Feldemeier, W. Horiuchi, T. Neff, Y. Suzuki
Phys. Rev. C84, 054003 (2011)

3 3
p

p

n

S=1, T=0, L=0

S=0, T=1, L=0

p
p

n

S=1, T=0, L=2

S=1, T=1, L=1

uncorrelated correlated

11

2 22

IPM: only L=0 (10), (01) states are possible
Correlated particles: tensor interaction in the p-n pair in L=2 can
induce a spin flip in the p-p pair with creation of a state L=1, (11)
of the pair. Three-body effect.
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(i)increase of the high momentum content of the wave function

Mean-field (shell model) wave function

Φ0(1, 2, . . . , A) = Â
A∏

i

φαi(xi) ≡ Φ0p0h αi > αF , φαi = 0

Correlated wave function
Ψ0(1, 2, . . . , A) = C0p0h φ0p0h + C1p1hΦ1p1h + C2p2hΦ2p2h + . . .

SRC =⇒
∞∑

n=2

CnpnhΦnpnh

Thus :
SRC populate states (n particle-n hole) with momentummuch higher
than the Fermi momentum kF ' 1.4fm−1!!!
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(ii) SRC generate peculiar wave function configurations

Momentum conservation
A∑

1

~ki = 0

Consider a nucleon with high momentum ~k1
In a mean-field configuration

~k1 ' −
A∑

2

~ki ~ki '
~k1

A

In a two-nucleon correlation configuration

~k1 ' −~k2
~KA−2 =

A∑

3

~ki ' 0 ~krel ' ~k1
~KCM = − ~KA−2 ' 0

SRC :HIGH relative and LOW CM momenta of a pair.
Frankfurt, Strikman, Phys. Rep. 1988
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THE HIGH MOMENTUM COMPONENTS IN THE ONE-BODY
MOMENTUM DISTRIBUTION

ρ(r1, r
′
1) =

∫
Ψ∗0(r1, r2 . . . , rA) Ψ0(r′1, r2 . . . , rA)

A∏

i=2

dri

n(k) =

∫
e−ik·(r1−r′1)ρ(r1, r

′
1)dr1dr

′
1

nA(k1) =
∑

ST

n
(ST )
A (k1) =

=

∫
dr1 dr

′
1e
ik1·(r1−r′1)

∑

ST

∫
dr2ρ

N1N2
ST (r1, r

′
1; r2)

Alvioli, CdA, Kaptari, Mezzetti, Morita,
arXiv:1211.0134v1[nucl-th] Phys. Rev. (in print)
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The ratio nA(k)/nD(k) according to recent calculations
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The increase of the ratio with k originates from the spin-isospin dependence of
the momentum distributions and from the CM motion of the pair in the

nucleus.
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The proton and neutron momentum distributions in 3He
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A proton is correlated with one p-n and one p-p pair; a neutron with
two n-p pair → Tensor dominance in neutron (proton) distributions
in 3He (3H) and in neutron-rich nuclei.
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TWO-BODY MOMENTUM DISTRIBUTIONS

krel ≡ k =
1

2
(k1 − k2 ) KCM ≡ K = k1 + k2

1. n(k1,k2) = n(krel,KCM ) = n(krel, KCM , θ) =

=
1

(2π)6

∫
drdr′dRdR′ e−iK ·(R−R

′
) e−ik·(r−r

′)ρ(2)(r, r′;R,R′)

2. n(krel, KCM = 0)

KCM = 0 =⇒ k2 = −k1,
back-to-back nucleons, like in the deuteron

3. nrel(k) =
1

(2π)3

∫
n(k,K) dK 4. nCM (K) =

1

(2π)3

∫
n(k,K) dk
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n(krel), n(KCM ) in FEW-NUCLEON SYSTEMS
Schiavilla et al Phys. Rev. Lett. 98(2007)132501 q ≡ krel Q ≡ KCM
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TENSOR DOMINANCE
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n(krel, KCM = 0) in COMPLEX NUCLEI
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Alvioli, CdA, Morita Phys. Rev. Lett. 100 (2008)162503
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SPIN-ISOSPIN DEPENDENCE of nrel(krel) in FEW-NUCLEON
SYSTEMS

H. Feldmaier, W. Horiuchi, T. Neff, Y. Suzuki, Phys. Rev. (2011)
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UNIVERSALITY: nArel(krel) ' CAnD(k) in (10) state
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THE 3D PICTURE OF n(krel,KCM ) = n(krel, KCM ,Θ)

! VERY IMPORTANT !

• If n(krel, KCM ,Θ) is Θ independent, it means that n(krel,KCM )
= n(krel)n(KCM ) i.e. the relative and CM motions factorize.
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n(krel, KCM , θ) symbols-Θ = 90o, dashes-Θ = 180o, full-2H.
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Alvioli, CdA, Kaptari, Mezzetti, Morita, Scopetta, Phys. Rev. C85(2012)
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at large values of krel and small values of KCM we have :

npn(krel,KCM) =⇒ npn(krel, KCM) ' nD(krel)nCM(KCM)

Factorization is proved by a rigorous many-body calculation
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We demonstrated that in the region krel ≥ k−rel(KCM)) factorization occurs.

k1 + k2 −KCM = 0, krel = (k1 − k2)/2, k2 = −k1 + KCM, krel = k1 −KCM/2

npn(krel, KCM ) ' nD(krel)nCM (KCM ) = nD(|k1 −
KCM

2
|)nCM (KCM )

which means

nN (k1) '
∫

nD(|k1 −
KCM

2
|)nNCM (KCM ) dKCM =

=

∫
PN (k1, E

∗
A−1) dE∗A−1

where PN(k1, E
∗
A−1) is the NUCLEON SPECTRAL FUNCTION

PN (k1, E
∗
A−1) =

∫
nD(|k1 −

KN
CM

2
|)nNCM (KCM )dKCM ×

× δ

(
E∗A−1 −

A− 2

2mN (A− 1)

[
k1 −

A− 1

A− 2
KCM

]2
)
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CdA, Simula Nucl. Phys. 1996
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The CM distribution of pn and pp pairs

n
pN
CM (KCM ) =

∫
dkrel n

pN (krel,KCM )
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The low momentum part of nCM(KCM) for A > 4 agrees with a Gaussian e−αK2
CM ,

in agreement with the convolution model where

α = [3(A− 1)/4(A− 2)] · [1/mN < TSM >]

( Theor. Prediction for A = 12: σ = 139 Mev/c (Nucl. Phys. 1966); Exp. value from
12C(p, ppn)X: σ = 143± 17 MeV/c) (PRL 2003).)
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THE CONVOLUTION STRUCTURE OF P (k,E) IS A GENERAL
FEATURE OF THE SPECTRAL FUNCTION, RESULTING

FROM SOME GENERAL PROPERTIES OF THE MANY-BODY
WAVE FUNCTIONS IN MOMENTUM SPACE
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CdA, Kaptari, Morita, Scopetta, Few-Body Systems, 50(2011)243
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3 EXPERIMENTAL EVIDENCE OF SRC
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3.1 The momentum distributions from inclusive A(e, e′)X processes

• Errors very large

•At high k errors much less than
the difference between Mean-
Field and correlated distribu-
tions

• Experimental data exist only
for a limited range of A and low
values of momenta.

CdA, Pace, Salmè, Phys. Rev. C43 1141(1991)
See also a recent review: Arrington et al, Progr. Part. Nucl. Phys. 2012
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3.2 The inclusive cross section ratio (a very useful quantity)
Original idea (Frankfurt, Strikman, Phys. Rep. 5 (1988) 235)

σA(xB, Q
2) =' A

2
a2(A)σ2(1.5 < xB < 2, Q2)+

A

3
a3(A)σ3(2 < xB < 3, Q2)+. . .
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3.3 Exclusive one-body knock-out reactions A(a,a’N)X a=(e,N)
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JLAB (SACLAY ) Experiments Phys. Rev. Lett. (2005)(1988 )

e +3 He→ e′ + p +2 H e +3 He→ e′ + p + (pn)
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CdA, L.P. Kaptari, Phys. Rev. Lett. 95(2005); 100 (2008)
FSI under control. SRC peak observed. Agreement with other groups.
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3.4 Exclusive two-body knock-out reactions A(a,a’2N)X a=(e,N) ⇒
two-body nucleon spectral function.
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12C(p, p′pN)X AGK BNL (2003); Piasetzky talk

Experiment
Tang et al PRL 04231 (2003)

Analysis
Piasetzky, Sargsian, Frankfurt,
Strikman, Watson
PRL 162504 (2006)
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4 IMPACT OF SRC ON VARIOUS FIELDS OF PHYSICS

Claudio Ciofi degli Atti
53

February 11-22, 2013 INT, Seattle, USA



3.1.Transition from hadron to quark gluon descriptions of nuclei

Nucleon radius < r2 >1/2' 0.8fm−1 ⇒ Nucleon overlap.

Adapted from: W. Weise, Nucl. Phys. A 805(2008)145c
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3.2 Formation of cold dense nuclear matter in the laboratory and
the structure of neutron stars

!"#$%&'($)*(+,-(+.&/-(0)*)(1)&-(&2)*34)1,5)3&"(&6+7*-("1&2%83"13&

'B4."1+,-(3&0-*&=)<$*-(&!$+*3&

y!)EF)FG%)#&.%)&-)'%"F.&')(FB.(H)/&(F)B##%IF%J)/&J%$()B(("/%)DK@6L)'%"F.&'(H)K6L)I.&F&'()

y!)!%M$%#N'M)FG%)'I2345)0'F%.B#N&'(H)&'%)#B')B(("/%)FO&)(%IB.BF%)P%./0)MB(%()

y!)30'#%)'I)0'F%.B#N&')0()$B.M%)#&/IB.%J)F&)''H)')MB()G%BF()FG%)I)MB()

y!)QG0()#&"$J)%R%#F)FG%)"II%.)$0/0F)&')/B(()&-)'%"F.&')B'J)B$$&O)FG%)'%"F.&'()0')FG%)(FB.)J%#BS))))&

See e.g. Frankfurt, Sargsian, Strikman Int. Jour. Mod. Phys.A (2008)
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3.3 High energy hadron-Nucleus and Nucleus-Nucleus scattering

C.d.A, B. Kopeliovich et al Phys. Rev.(2009, 2010,2011,2012)

Glauber + Gribov Inelastic shadowing +SRC

NN

AA

fNN N

A A

NX XNfN f N N

A A

NX f XNf f XX

(Glauber) (Inelastic Shadowing)
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Another recent calculation of the effects of SRC in high energy
scattering processes:

”A Monte Carlo generator of nucleon configurations in complex
nuclei including Nucleon-Nucleon correlations”
M. Alvioli, H.J. Drescher and M. Strikman,

Phys. Lett. (2009)
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4. CONCLUSIONS
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• NN SRC can be calculated ab initio with realistic NN interactions. They
exhibit several universal (independent of A) features.

• robust evidence on the effects of NN SRC have been collected in the last few
years both in few-nucleon systems and 12C.

• NN SRC can provide basic information on the nature of the NN force. The
experimental information so far obtained is in agreement with the current
picture of phenomenological realistic NN interactions.

• SRC can have relevant effects on the structure of cold dense hadronic matter
and high energy h− A and A− A scattering processes.

• The successful experimental study of NN SRC is a relatively new field of
research that has to be continued, extending it to an increasing number of
nuclei and to the investigation of the 3D structure of SRC (JLab, JPARC(?)).
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